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Abstract: Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the
dominant disturbances in active magnetic bearing (AMB) systems. To eliminate the harmonic force
and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly,
the dynamics of a four radial degrees of freedom AMB system is described, and the AMB model can
be described in terms of the translational and rotational motions, respectively. Next, a closed-loop
generalized notch filter is utilized to identify the synchronous displacement resulting from the rotor
imbalance, and a feed-forward compensation of the synchronous force and torque related to the
AMB displacement stiffness is formulated by using the identified synchronous displacement. Then,
a plug-in repetitive controller is designed to track the synchronous feed-forward compensation
adaptively and to suppress the harmonic vibrations due to the sensor runout. Finally, the proposed
control method is verified by simulations and experiments. The control algorithm is insensitive to
the parameter variations of the power amplifiers and can precisely suppress the harmonic force and
torque. Its practicality stems from its low computational load.

Keywords: active magnetic bearing; harmonic force and torque; rotor imbalances; repetitive control;
notch filter

1. Introduction

Control moment gyroscope (CMG) is one of the most important spacecraft attitude control
actuators [1]. Extremely high stability of the spacecraft platform is indispensable for high-resolution
Earth observation spacecraft equipped with many sensitive payloads. The CMG consists of a
high-speed rotor mounted on a gimbal, which is fixed in the spacecraft platform [2]. The platform
stability is severely affected by the undesirable harmonic force and torque of the high-speed rotor in
the CMG [3]. Considering the support method of the high-speed rotor, CMGs can be divided into
CMGs with mechanical bearings and CMGs with active magnetic bearings (AMBs) [4]. If mechanical
bearings are employed, considerable harmonic force and torque will be directly transferred to the
spacecraft platform [5]. In contrast, AMB, which provides several significant advantages of low friction,
high speed, adjustable bearing damping, and especially active control ability, has been widely used to
support the high-speed rotor of the CMG [6].

The frequencies of the harmonic force and torque in AMB are mainly composed of synchronous
and multiple higher integer harmonics of the rotational speed [7]. Rotor imbalance, which results
from the discrepancy between the geometric axis and the inertial axis of the rotor, is regarded as
the main source of the synchronous force and torque source [8]. Suppression methods of the rotor
imbalance fall into two main categories: suppression of displacement [9] and suppression of housing
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vibration [8]. The former one aims at forcing the rotor to rotate around its geometric axis [10], while
the centrifugal force which quadratically rises with the rotational speed will induce severe housing
vibrations. To solve this problem, the latter one makes the rotor rotate around the inertial axis. Several
control methods have been reported to suppress the housing vibration by reducing synchronous
current, such as generalized notch filters [8], Fourier coefficient computation [11], etc. In fact, the
synchronous housing vibration is induced by the imbalance force and torque, which are composed
of two parts related to the current stiffness and the displacement stiffness, respectively. Although
the synchronous housing vibration related to the current stiffness can be well eliminated by using
these synchronous current reduction strategies, a certain amount of housing vibration related to the
displacement stiffness still remains [12]. For further suppression of the residual housing vibration,
precise control current should be provided by designing additional controllers, such as adaptive
autocentering control and feed-forward compensation [13,14]. Suppression of housing vibration
is referred to as the elimination of synchronous force and torque strategy, which achieves a clean
transmission of vibration force and torque. However, the suppression precision is severely affected by
the parameter variations of power amplifiers in the AMB system [12]. Adaptive least mean square
feed-forward [15], gain phase modifier [16] and double-loop compensation [17] have been proposed to
achieve an adaptive compensation of the power amplifiers. However, it is very difficult to analyze the
performance of these controllers owing to their complex algorithm, and intensive computational effort
is required.

Sensor runout, which results from the non-uniform properties around the sensing surface of the
rotor, also generates disturbances at multiple integer frequencies of the rotational speed [7]. Setiawan
proposed a simultaneous identification and compensation method of the synchronous sensor runout
and the rotor imbalance based on adaptive controller and bearing stiffness variation [18]. However, it is
difficult to guarantee the stability of the adaptive algorithm and to analyze its performances. To identify
or to suppress multi-frequency disturbances, compact wavelets [19], modified notch filter [20], response
matching with FIR filter [21] and synchronous rotating frame transformation [22] can be employed,
but the control’s computational complexity will sharply increase in direct proportion to the number
of the harmonics considered. The computational cost may exceed the hardware capability if a four
radial degrees of freedom (DOF) AMB system is studied. It is difficult even unavailable to run too
much control algorithm in a very short sampling time for spatial microprocessors, because it has a
low calculation capability [23]. To simplify the control algorithm, an iterative learning control was
proposed to eliminate the unbalance effects by Bi [24], but only the translational motions in two radial
DOF is considered.

To precisely eliminate harmonic force and torque, the synchronous force and torque caused by
the AMB displacement stiffness and rotor imbalance has to be compensated accurately and adaptively
unaffected by the parameter variations of the power amplifiers, and the harmonic force and torque
caused by the sensor runout have to be effectively suppressed simultaneously. For practical uses,
the computation effort of the control algorithm has to be limited. The repetitive controller is widely
employed owing to its superior tracking performance of periodic reference signal and low output total
harmonic distortion [25]. Xu proposed a two-step suppression method of harmonic vibration [26].
Since the harmonic vibration is caused by the rotor imbalance and the sensor runout. To distinguish
them, field balancing is firstly employed for online identification and offline compensation of the
rotor imbalance. Once the rotor imbalance is reduced, the residual harmonic vibration is only the
harmonic current, which is reduced by the sensor runout. Then a repetitive controller is designed to
suppress the harmonic current. However, there are many problems in the field balancing in practice.
Apparently, it is time-consuming because it needs to disassemble the AMB system and to take the
rotor out for improving the mass distribution with discrete add-on weights. This will decrease the
mechanical assembling accuracy. Moreover, a certain amount of the rotor imbalance always remains,
and it changes during the operation [8].



www.manaraa.com

Sensors 2017, 17, 763 3 of 15

In this work, a new method to eliminate harmonic force and torque in four radial-DOF AMBs has
been proposed and studied. Field balancing or disassembly are no longer needed. Only the control
algorithm is designed so that the rotor imbalance and sensor runout can be separated and suppressed
on-line. Generalized notch filter combing with feed-forward compensator are formulated to identify
the rotor imbalance and to reduce the synchronous force and torque. Meanwhile, a plug-in repetitive
controller, insensitive to the parameter variations of the power amplifiers, is designed to track the
synchronous reference formulated by the identified rotor imbalance and to eliminate the harmonic
force and torque caused by the sensor runout.

2. Harmonic Force and Torque of the 4-DOF AMB System

Figure 1 shows the diagram of the AMB system in the XZ plane, which consists of an imbalanced
rotor, four pairs of radial AMB stators and displacement sensors (only two of them are shown, and the
others are oriented orthogonal to the paper), a controller and power amplifiers.
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Figure 1. Diagram of the AMB system in the XZ plane.

According to the displacement of the rotor’s geometric axis, which can be measured by the
displacement sensors, the controller drives the power amplifiers to generate control currents in the
AMB stators. Then, magnetic force and torque are induced and controlled to levitate the rotor. As is
known, every rotor has six DOF: three in terms of translational motions and three in terms of rotational
motions. Among these freedoms in this AMB system, the axial rotational motion is driven by a motor
with a speed of Ω, while the axial translational motion is controlled by the axial AMB. It is noted
the harmonic force and torque have little couple with these two axial motions [7], so only four radial
motions controlled by the radial AMBs are discussed in this work. To describe the AMB system, three
coordinates are defined as:

(1) The generalized coordinate, where o the center of the AMB stators, x and y are the translational
displacements in the X and Y directions, respectively, while fx and fy are the corresponding
forces; α and β are the rotational displacements, while pα and pβ are the corresponding torques.

(2) The sensor coordinate, where ls is the distance from the center of a displacement sensor to the
origin, sax, sbx, say and sby are the measured displacements of the rotor’s geometric axis in four
decentralized directions of ax, bx, ay and by, respectively.



www.manaraa.com

Sensors 2017, 17, 763 4 of 15

(3) The stator coordinate, where lm is the distance from the center of a radial AMB stator to the origin,
iax, ibx, iay and iby are the coil currents in the four decentralized directions (only iax and ibx are
visible in Figure 1), while fax, fbx, fay and fby are the corresponding control forces.

The displacements of the geometric and inertial axes are defined as qG = [xG βG yG − αG]
T and

qI = [xI β I yI − αI ]
T in the generalized coordinate. Since the static and dynamic imbalances are the

eccentricity and inclination angle between qG and qI , an imbalance vector ∆q can be expressed by:

∆q = qI − qG =


∆x
∆β

∆y
−∆α

 =


ε cos(Ωt + χ)

σ sin(Ωt + δ)

ε sin(Ωt + χ)

−σ cos(Ωt + δ)

 (1)

where ε (σ) and χ (δ) are the amplitude and the initial phase of the static (dynamic) imbalance.
Since senor runout is the displacement noise, its vector qsr is defined in the sensor coordinate.

After compensating the synchronous component manually [18], residual qsr can be expressed as:

qsr =



n
∑

i=2
sasi sin(iΩt + αsi)

n
∑

i=2
sbsi sin(iΩt + βsi)

n
∑

i=2
sasi sin(iΩt + αsi − iπ

2 )

n
∑

i=2
sbsi sin(iΩt + βsi − iπ

2 )


(2)

where i is the harmonic number, sasi and sbsi are harmonic Fourier coefficients, αsi and βsi are harmonic
initial phases.

According to the gyro technique equations and Newton’s second law, the dynamics of the AMB
system in the radial four DOF can be given by [26]:{

ms2xI(s) = 2[kx − 2kiksGw(s)Ct(s)][xI(s)− ∆x(s)]− 2kiGw(s)Ct(s)xsr(s)
ms2yI(s) = 2[kx − 2kiksGw(s)Ct(s)][yI(s)− ∆y(s)]− 2kiGw(s)Ct(s)ysr(s)

(3)


Jrs2αI(s) + JzΩsβ I(s) = 2

[
kx lm2 − kikslmlsGw(s)Crs(s)

]
[αI(s)− ∆α(s)]− 2kilmGw(s)Crs(s)αsr

+2kikslmlsGw(s)Crc(s)[β I(s)− ∆β(s)] + 2kilmGw(s)Crc(s)βsr

Jrs2β I(s)− JzΩsαI(s) = 2
[
kx lm2 − kikslmlsGw(s)Crs(s)

]
[β I(s)− ∆β(s)]− 2kilmGw(s)Crs(s)βsr

−2kikslmlsGw(s)Crc(s)[αI(s)− ∆α(s)]− 2kilmGw(s)Crc(s)αsr

(4)

where m is the mass of the rotor, kx is the AMB displacement stiffness, ki is the AMB current stiffness, ks

is the coefficient of the displacement sensor, Gw(s) is the transfer function of the simplified first-order
low-pass filter model of the power amplifier, Jr and Jz are the transverse and polar moments of inertia
of the rotor, respectively, Ct(s) is the main controller of the translational system, Crs(s) and Crc(s) are
the main controllers of the coupled rotational system, and:

Gw(s) = kw
ωw

s + ωw
,


Ct(s) = kP + kI

1
s + kDs

Crs(s) = kP + kI
1
s + kDs + krhΩs

s+ωrh
cos φ− krlΩωrl

s+ωrl
cos ϕ

Crc(s) =
krhΩs
s+ωrh

sin φ− krlΩωrl
s+ωrl

sin ϕ

,
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xsr =
1
2

n
∑

i=2
[sasi sin(iΩt + αs) + sbsi sin(iΩt + βs)]

ysr =
1
2

n
∑

i=2

[
sasi sin(iΩt + αs − iπ

2 ) + sbsi sin(iΩt + βs − iπ
2 )
]

αsr =
1
2

n
∑

i=2

[
sbsi sin(iΩt + βs − iπ

2 )− sasi sin(iΩt + αs − iπ
2 )
]

βsr =
1
2

n
∑

i=2
[sasi sin(iΩt + αs)− sbsi sin(iΩt + βs)]

,


∆x(s) = ε cos χs−Ω sin χ

s2+Ω2

∆y(s) = ε sin χs+Ω cos χ
s2+Ω2

∆α(s) = σ cos δs−Ω sin δ
s2+Ω2

∆β(s) = σ sin δs+Ω cos δ
s2+Ω2

kw and ωw are the gain and the cutoff frequency of the simplified low-pass power amplifier model,
kP, kI and kD are coefficients of the typical proportional-integral-derivative controller, krh and krl are
gains of the cross feedback control to suppress the gyroscopic effect [27], ωrh and ωrl are the cutoff
frequencies of the high-pass and low-pass filters, respectively, φ and ϕ are the cross phases. From
Equations (3) and (4), the following conclusions can be drawn:

(1) The rotor imbalance generates synchronous force and torque related to both ki and kx, whereas
sensor runout generates multiple higher harmonic force and torque only related to ki due to
its nature of the measured sensor noise. Therefore, they need different suppression methods.
To suppress the synchronous force and torque, accurate control current should be generated so that
the synchronous vibration related to ki counteracts that related to kx precisely. To suppress harmonic
force and torque, only harmonic currents need be cleaned because they are only related to ki.

(2) Since the employed Gw is voltage-sourced, its parameter variations can highly decrease the
precision of the synchronous control current. For a precise suppression of the synchronous force
and torque, the synchronous control current has to be accurate, so that the parameter variations
of Gw can be well compensated.

(3) The translational motions and the rotational motions are uncoupled. Furthermore, the two
translational motions are also uncoupled, whereas the two rotational motions are coupled because
of the gyroscopic effects [27].

To simplify the 4-DOF AMB system, which can be transformed to two plural subsystems, we let:

rI = xI + jyI
∆r = ∆x + j∆y
rsr = xsr + jysr

oI = αI + jβ I
∆o = ∆α + j∆β

osr = αsr + jβsr

(5)

where j is the complex unit.
Then Equations (3) and (4) can be expressed as:

ms2rI(s) = −2kiGw(s)Ct(s)rsr(s) + 2[kx − 2kiksGw(s)Ct(s)][rI(s)− ∆r(s)] (6)

Jrs2oI(s)− jJzΩsoI(s) = −2kilmGw(s)Csc(s)osr + 2
[
kxlm2 − kikslmlsGw(s)Csc(s)

]
[oI(s)− ∆o(s)] (7)

where: {
∆r(s) = εejχ

s−jΩ

∆(s) = σejδ

s−jΩ

Csc(s) = Crs(s) + jCrc(s) = Ct(s) +
(

krh
s

s + ωrh
ejφ − krl

ωrl
s + ωrl

ejϕ
)

Ω

If a complete suppression of harmonic force and torque can be achieved, the rotor will rotate
around its inertial axis, which means rI and oI are zero. Then, we can see from Equations (6) and (7)
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that the left sides of both equations are equal to zero. The right sides of both equations are composed
of two parts: the sensor runout (rsr and osr) part only related to ki and the rotor imbalance (∆r and ∆o)
part related to both ki and kx. Therefore, to suppress the synchronous force and torque, synchronous
control current should be generated so that two synchronous vibrations respectively related to ki and
kx counteract. Moreover, synchronous control current should be precise unaffected by parameter
variations of Gw(s). To suppress the multiple higher harmonic force and torque, only a reduction of
the harmonic currents is needed.

3. Suppression of the Harmonic Force and Torque

The structure of the closed-loop generalized notch filter with an internal notch feedback block [8]
is shown in Figure 2, where Nn f (s) is the transfer function of the internal notch feedback, z f is the
input signal with a synchronous component to be separated, y f is the output signal, x f is error signal,
ξm is the damping coefficient. The dynamic equation of the internal feedback block can be given by:

y f = ξm

[
sin(Ωt) cos(Ωt)

]∫ [ x f sin(Ωt)
x f cos(Ωt)

]
dt (8)

From Equation (8), the following equations can be easily verified:{
y f = ξm

[
sin(Ωt)

∫
x f sin(Ωt)dt + cos(Ωt)

∫
x f cos(Ωt)dt

]
..
y f + Ω2y f = ξm

.
x f

(9)

Then we can obtain the transfer function as:

Nn f (s) =
y f (s)
x f (s)

= ξm
s

s2 + Ω2 (10)

From Equation (10), it’s easy to verify that the magnitude at the notch frequency of Ω is infinite.
The transfer function of the closed-loop generalized notch filter can be given:

Gn f (s) =
x f (s)
z f (s)

=
(

1 + Nn f (s)
)−1

=
s2 + Ω2

s2 + ξms + Ω2 (11)

It is clear that Gn f (s) will vanish if s = jΩ and ξm 6= 0, and this confirms its notch
filter characteristics.

Upon the convergence of the closed-loop generalized notch filer, y f will be the separated
synchronous component of z f . Therefore, y f can be utilized to design the feedforward compensation,
which will generate the synchronous control current to counteract the synchronous force and torque
related to kx.
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The diagrams of the translational system and the rotational system with synchronous force
and torque elimination are shown in Figures 3 and 4, respectively, where Gr f (s) and Go f (s) are the
feed-forward controllers for the translational an rotational systems, respectively, and:

G(s) =
1

ms2

H(s) =
1

Jrs2 − jJzΩs

As shown in Figures 3 and 4, to eliminate the synchronous force and torque, we have:
lim
s=jΩ

rI (s)
G(s) (s− jΩ) = lim

s=jΩ
− Cr0(s)∆r(s)

1−G(s)Cr0(s)
(s− jΩ) = 0

lim
s=jΩ

oI (s)
H(s) (s− jΩ) = lim

s=jΩ
− Co0(s)∆o(s)

1−H(s)Co0(s)
(s− jΩ) = 0

(12)

where:
Cr0(s) = 2kx − 2kiksGw(s)

[
Gn f (s)Ct(s) +

(
1− Gn f (s)

)
Gr f (s)

]
Co0(s) = 2kxl2

m − 2kikslmlsGw(s)
[

Gn f (s)Csc(s) +
(

1− Gn f (s)
)

Co f (s)
]

Solving Equation (12) yields: 
Cr f (s)

∣∣∣
s=jΩ

= kx
kiks

Gw(jΩ)−1

Co f (s)
∣∣∣
s=jΩ

= kx lm
kiks ls

Gw(jΩ)−1 (13)
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In practice, it is difficult to design Gw(jΩ)−1 and to keep it accurate all the time, because parameter
variations will inevitably occur during operation (e.g., thermal effects).

For a good elimination of the harmonic force and torque, the synchronous feed-forward control
current has to stay precise unaffected by the parameter variations of Gw, while an accurate reduction
of the higher harmonic currents is achieved. Repetitive control is employed owing to its superior
tracking performance of the periodic reference signal and attenuation performance of the harmonic
disturbance signals.

Figures 5 and 6 show the diagrams of the translational and rotational systems with harmonic
force and torque elimination, where e−Tps is a delay element, and Tp is the delay. It is expected from the
internal model principle that he harmonic disturbance signals can be well suppressed if Tp is equal to
the period of the rotor speed. FL(s) is a low-pass filter to improve the system stability, Cbr(s) and Cbo(s)
are lead elements to improve the system bandwidth, ir is the translational current and ir = ix + jiy, io

is the rotational current and io = iα + jiβ:

FL(s) =
ωL

s + ωL

Cbr(s) = kcr
s + ωw

kωs + ωw

Cbo(s) = kco
s + ωw

kωs + ωw

ωL is the cutoff frequency of FL(s), kcr and kco are positive parameters to be chosen, kω is a positive
parameter to compensate the phase lag due to Gw.

ir and io are adopted as the feedback signals, so the equivalent harmonic disturbance currents
caused by sensor runout can be well reduced. The feed-forward compensations, which are the
synchronous control currents to compensate the synchronous vibration force and torque related to
kx, are used as the reference signals of the repetitive controllers, so that they can be precisely tracked
unaffected by the parameter variations of Gw.
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From Equation (13) and Figures 5 and 6, we have:{
Cr f (s) =

kx
kiks

Co f (s) =
kx lm
kiks ls

(14)

The sensitive suppression functions of the repetitive controllers can be calculated as:
Mr(s) =

1−FL(s)e
−Tps

1−
(

1− Cbr(s)Gw(s)
1+C f r(s)Gw(s)

)
FL(s)e

−Tps

Mo(s) =
1−FL(s)e

−Tps

1−
(

1− Cbo(s)Gw(s)
1+C f o(s)Gw(s)

)
FL(s)e

−Tps

(15)

where:

C f r(s) = 2kiks
Ct(s)G(s)

1− 2kxG(s)

C f o(s) = 2kikslmls
Csc(s)H(s)

1− 2kxlm2H(s)

To eliminate the harmonic force and torque, the sensitive suppression functions at the harmonic
frequencies should be zero

lim
s=j2mπ/Tp

|Mr(s)| = lim
s=j2mπ/Tp

|Mo(s)| = 0 (16)

where m = 1, 2, · · · , mmax with mmax the largest number of the harmonics to be suppressed.
To suppress the largest harmonic effectively, ωw/kω ≥ mmaxΩ, then we have:

kω≤ ωw/(mmaxΩ) (17)

Solving Equation (16) yields:
lim

s=j2mπ/Tp
1− FL(s) = 0 (18)

Equation (17) can be divided into two conditions in terms of amplitude and phase, respectively.
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lim

s=j2mπ/Tp
|FL(s)| = 1

lim
s=j2mπ/Tp

∠FL(s)e−Tps = 0
(19)

To fulfill the amplitude and phase requirements of Equation (19), ωL and Tp can be determined by:{
ωL > 2mmπ/Tp

Tp = 2π
Ω

[
1− 1

2π tan−1
(

Ω
ωL

)] (20)

Since the control algorithm is implemented digitally, Tp should be an integer multiple of the
sampling period. To fulfill this condition, the value of ωL can be tuned slightly within its value range.

The regeneration spectrum method can be utilized to analyze the system stability and to choose
the values of kcr and kco. However, it is time consuming. In fact, if kcr = kco = 0, the repetitive
controllers will be shut down. With the increase of the values of kcr and kco, convergence speeds of ix

and io become higher, whereas the stability margins become smaller. Therefore, the actual values of kcr

and kco have to be determined according to the performance in simulations and experiments.

4. Simulations and Experiments

To verify the proposed control approach, simulations and experiments by using a magnetically
suspended CMG (MSCMG), whose rotor is levitated by the AMB, have been performed. Figure 7
shows the picture of the experimental setup, which is composed of a vacuum pump, accelerometer,
controller and amplifier, power, oscillograph, and MSCMG. The MSCMG consists of a gyro housing
and a gimbal. The gimbal is supported by a bracket, where an accelerometer is employed to measure
the harmonic vibration acceleration transmitted through the bracket to the spacecraft. A high-speed
AMB system is inside the gyro room, while the vacuum pump is employed to create a nearly vacuous
environment to reduce the wind resistance (the air pressure is about 2 Pa). The proposed control
algorithm is implemented in a digital signal processor and field programmable gate array based
controller with a sampling and control period of 148.6 µs. Eight eddy-current sensors are employed to
measure qG, while one Hall sensors is utilized to measure Ω. The oscillographs are employed to show,
analyze, and store the values of the measured displacement, current and acceleration signals.
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The parameters of the AMB system are presented in Table 1, where the values of the parameter
are measured or estimated through actual experiments. It is noted that since the nominal speed of
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MSCMG is 200 Hz, while the first, third and fifth harmonics are dominant in practical experiments, the
harmonic frequencies of 200, 600 and 1000 Hz are considered.

Table 1. Parameters of the AMB system with the proposed control approach.

Parameters Value Parameters Value

m 57 kg ξm 2 × 106

Jr 0.62 kg ·m2 Ω 200 Hz
Jz 0.82 kg ·m2 ωL 104 rad/s
lm 0.113 m Tp 0.0049 s
ls 0.178 m kcx 960
ki 450 N/A kco 1100
kx 2.5 × 106 N/m ε 5 × 10−6 m
ks 1.5 × 107 V/m χ π/3 rad

ωw 1683 rad/s σ 2.8 × 10−5 rad
kw 1.23 × 10−4 A/V δ −π/3 rad
kP 5 sas3 4
kI 40 αs3 4π/3 rad
kD 0.01 sas5 1
krh 0.01 αs5 9π/5 rad
krl 0.001 sbs3 5
ωrh 1256.6 rad/s βs3 11π/6 rad
ωrl 314.2 rad/s sbs5 2
φ 2.5 rad βs5 π/5 rad
ϕ 0.9 rad

Only results related to fx and pα are shown here because they have the same amplitudes as fy and
pβ, respectively, except for steady phase lead angles of π/2, if the rotor rotates anticlockwise. Since very
big differences exist in the amplitudes of different harmonics, their fast Fourier transformation (FFT) is
carried out so that the harmonics of fx and pα can be easily recognized. Furthermore, to simulate the
influence of the actual current noises on the performance of the proposed control method, a random
noise with mean and variance values of 0 and 1 × 10−4 is added to the outputs of the power amplifiers.

As shown in Figures 8a and 9a, the synchronous, third and fifth harmonics of fx and pα without
the proposed control method are very obvious among all the frequencies. The original synchronous,
third and fifth harmonics of fx are 41.7, 17.8 and 13.1 dB, respectively, while those of pα are 5.4, −5.8
and −5.6 dB, respectively.

After the proposed control method is enabled, as can be seen in Figures 8b and 9b, the synchronous,
third and fifth harmonics of fx are suppressed to 8.6, 6.7 and 5.4 dB, respectively, while those of pα are
suppressed to −14.2, −13.1 and −13.5 dB, respectively. The harmonics of fx and pα are suppressed by
such considerable degrees that it is a little difficult to identify them among the random noise.

The magnetic force in the stator coordinate can be linearized as a function of coil current and the
geometric axis displacement at the equilibrium point as [14]:

fcn = kiicn + kxxcn (21)

where cn is the channel number and cn = ax, bx, ay, by. xcn is the geometric axis displacement in the
stator coordinate, and it can be obtained from the measured displacements in the sensor coordinate
through a coordinate transformation.

xax

xbx
xay

xby

 =
1

2ksls


ls + lm ls − lm 0 0
ls − lm ls + lm 0 0

0 0 ls + lm ls − lm
0 0 ls − lm ls + lm




sax

sbx
say

sby

 (22)
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Then the force and torque in the generalized coordinate can be derived through another coordinate
transformation as follows: 

fx

pβ

fy

−pα

 =


1 1 0 0
lm −lm 0 0
0 0 1 1
0 0 lm −lm




fax

fbx
fay

fby

 (23)

Finally, the values of fx and pα can be well acquired in experiments, as icn and scn are precisely
measured by using Hall current sensors and eddy-current sensors.

Sensors 2017, 17, 763 13 of 16 

 

suppressed by such considerable degrees that it is a little difficult to identify them among the random 
noise. 

The magnetic force in the stator coordinate can be linearized as a function of coil current and the 
geometric axis displacement at the equilibrium point as [14]: 

cn i cn x cnf ki k x   (21) 

where cn is the channel number and cn = ax, bx, ay, by . cnx  is the geometric axis displacement in 
the stator coordinate, and it can be obtained from the measured displacements in the sensor 
coordinate through a coordinate transformation 

  

(a) (b)

Figure 8. Simulation results of fx. (a) before harmonic force elimination; (b) after harmonic force 
elimination. 

(a) (b)

Figure 9. Simulation results of pα. (a) before harmonic torque elimination; (b) after harmonic torque 
elimination. 

0 0

0 01
0 02

0 0

ax axs m s m

bx bxs m s m

ay ays m s ms s

by bys m s m

x sl l l l

x sl l l l

x sl l l lk l

x sl l l l

     
         
     
    

        

 (22) 

Then the force and torque in the generalized coordinate can be derived through another 
coordinate transformation as follows: 

1 1 0 0

0 0

0 0 1 1

0 0

axx

bxm m

ayy

bym m

ff

fp l l

ff

fp l l





    
         
    
    

        

 (23) 

Finally, the values of fx and pα can be well acquired in experiments, as cni  and cns  are precisely 
measured by using Hall current sensors and eddy-current sensors. 

As shown in Figures 10a and 11a, the first, third and fifth harmonics are distinct among the FFT 
of fx and pα without the proposed control method, their original values were about 39.8, 16.2, 12.4 dB 
and 5.2, −5.4, −5.7 dB, respectively. After the proposed control method is activated, as can be seen in 
Figures 10b and 11b, those harmonic values of fx and pα are suppressed by 31, 9.1, 6.7 dB and 18.9, 8.9, 

0 0.2 0.4 0.6 0.8 1 1.2

 (
dB

)
xf

Frequency (kHz)

50

30

10

10 0 0.2 0.4 0.6 0.8 1 1.2

 (
dB

)
xf

Frequency (kHz)

50

30

10

10

0 0.2 0.4 0.6 0.8 1 1.2

 (
dB

)
p 

Frequency (kHz)

20

0

20

40




0 0.2 0.4 0.6 0.8 1 1.2

 (
dB

)
p 

Frequency (kHz)

20

0

20

40





Figure 8. Simulation results of fx. (a) before harmonic force elimination; (b) after harmonic
force elimination.
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Figure 9. Simulation results of pα. (a) before harmonic torque elimination; (b) after harmonic
torque elimination.

As shown in Figures 10a and 11a, the first, third and fifth harmonics are distinct among the FFT
of fx and pα without the proposed control method, their original values were about 39.8, 16.2, 12.4 dB
and 5.2, −5.4, −5.7 dB, respectively. After the proposed control method is activated, as can be seen in
Figures 10b and 11b, those harmonic values of fx and pα are suppressed by 31, 9.1, 6.7 dB and 18.9, 8.9,
7.5 dB, respectively. Furthermore, good matching of the suppression degrees of the experiment results
and the simulation results can be observed.

To give an independent verification of the practicality of the proposed control method, the
measured acceleration vt by the accelerometer is used to demonstrate the vibration transmission from
the AMB system to the bracket of the MSCMG. Comparing Figure 12a,b, the values of first, third and
fifth harmonic vibrations are reduced from −33.8, −53.4 and −56.1 dB to −58.6, −62.7 and −63.1 dB,
respectively. The residual harmonics have similar sizes to the visible noises (mainly caused by the
gyroscopic effects and the structural resonance of the MSCMG test rig), which means the transmission
of the harmonic vibrations is significantly attenuated.

Little change happens to the elimination precision of the harmonic vibrations during a ten-hour
operation. This indicates that the repetitive controller is insensitive to the parameter variations
caused by the temperature change. Compared with the adaptive synchronous compensation, which is
nonlinear and bring difficulty in analyzing the closed-loop system stability [28], the repetitive controller
is simpler. Furthermore, no additional computation is needed in this work, whereas the adaptive
synchronous compensation is composed of many complex calculations, such as arc tangent and
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modulus operations. Compared with the harmonic vibration suppression in [26], only improvement of
the control algorithm is needed. Since field balancing is no longer required, this will save a lot of time
in practice. Furthermore, it is helpful for a good mechanical assembly accuracy without disassembly.
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Figure 10. Experiment results of fx. (a) before harmonic force elimination; (b) after harmonic
force elimination.
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Figure 11. Experiment results of pα. (a) before harmonic torque elimination; (b) after harmonic
torque elimination.
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Figure 12. Experiment results of Vt. (a) before harmonic force and torque elimination; (b) after
harmonic force and torque elimination.

5. Conclusions

In this work, harmonic force and torque elimination in the 4-DOF AMB system with rotor
imbalance and sensor runout is studied. A novel control method consisting of generalized notch
filter, feed-forward compensation and repetitive control is proposed, and its effectiveness has been
demonstrated by simulations and experiments. The first, third and fifth harmonic force and torque
are well suppressed, and no visible mutual couplings among the harmonics or the other frequencies
exist. The proposed method is very suitable for moment exchange devices with AMB systems in
the high-resolution Earth observation spacecraft, and it can be extended to many industrial AMB
applications, where suppression of the harmonic house vibration is needed. However, the suppression
degree decreases with the increase of the frequency, this is mainly because the error between FL(s)e−Ts

and 1 becomes larger. The power spectrum, which acquires better estimation from noisy signals, is
more appropriate for the data processing than the FFT. Improvement of the repetitive controller and
data processing with the power spectrum will be topics for our further research work.
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